0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC2 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x >= 0) {
x = x+1;
int y = 1;
while (x >= y) {
y++;
}
x = x-2;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 27 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
482_0_main_LT(x1, x2, x3, x4, x5) → 482_0_main_LT(x2, x3, x4, x5)
Cond_482_0_main_LT1(x1, x2, x3, x4, x5, x6) → Cond_482_0_main_LT1(x1, x3, x4, x5, x6)
Cond_482_0_main_LT(x1, x2, x3, x4, x5, x6) → Cond_482_0_main_LT(x1, x3, x4, x5, x6)
Filtered duplicate args:
482_0_main_LT(x1, x2, x3, x4) → 482_0_main_LT(x3, x4)
Cond_482_0_main_LT1(x1, x2, x3, x4, x5) → Cond_482_0_main_LT1(x1, x4, x5)
Cond_482_0_main_LT(x1, x2, x3, x4, x5) → Cond_482_0_main_LT(x1, x4, x5)
Filtered unneeded arguments:
Cond_482_0_main_LT(x1, x2, x3) → Cond_482_0_main_LT(x1, x2)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > x0[0] && x0[0] > 0 && 0 <= x0[0] - 2 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (0), if ((x0[1] - 2 + 1 →* x0[0])∧(1 →* x1[0]))
(1) -> (2), if ((x0[1] - 2 + 1 →* x0[2])∧(1 →* x1[2]))
(2) -> (3), if ((x1[2] > 0 && x1[2] <= x0[2] →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] + 1 →* x1[0]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] + 1 →* x1[2]))
(1) (&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 482_0_MAIN_LT(x0[0], x1[0])≥NonInfC∧482_0_MAIN_LT(x0[0], x1[0])≥COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])), ≥))
(2) (<=(0, -(x0[0], 2))=TRUE∧>(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ 482_0_MAIN_LT(x0[0], x1[0])≥NonInfC∧482_0_MAIN_LT(x0[0], x1[0])≥COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])), ≥))
(3) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(4) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(5) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-3] + [-1]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(8) (&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧+(-(x0[1], 2), 1)=x0[0]1∧1=x1[0]1 ⇒ COND_482_0_MAIN_LT(TRUE, x0[1], x1[1])≥NonInfC∧COND_482_0_MAIN_LT(TRUE, x0[1], x1[1])≥482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)∧(UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥))
(9) (<=(0, -(x0[0], 2))=TRUE∧>(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ COND_482_0_MAIN_LT(TRUE, x0[0], x1[0])≥NonInfC∧COND_482_0_MAIN_LT(TRUE, x0[0], x1[0])≥482_0_MAIN_LT(+(-(x0[0], 2), 1), 1)∧(UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥))
(10) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(11) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(12) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(13) (x0[0] ≥ 0∧x1[0] + [-3] + [-1]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(14) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(15) (&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧+(-(x0[1], 2), 1)=x0[2]∧1=x1[2] ⇒ COND_482_0_MAIN_LT(TRUE, x0[1], x1[1])≥NonInfC∧COND_482_0_MAIN_LT(TRUE, x0[1], x1[1])≥482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)∧(UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥))
(16) (<=(0, -(x0[0], 2))=TRUE∧>(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ COND_482_0_MAIN_LT(TRUE, x0[0], x1[0])≥NonInfC∧COND_482_0_MAIN_LT(TRUE, x0[0], x1[0])≥482_0_MAIN_LT(+(-(x0[0], 2), 1), 1)∧(UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥))
(17) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(18) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(19) (x0[0] + [-2] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(20) (x0[0] ≥ 0∧x1[0] + [-3] + [-1]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(21) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(22) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 482_0_MAIN_LT(x0[2], x1[2])≥NonInfC∧482_0_MAIN_LT(x0[2], x1[2])≥COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥))
(23) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ 482_0_MAIN_LT(x0[2], x1[2])≥NonInfC∧482_0_MAIN_LT(x0[2], x1[2])≥COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥))
(24) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(25) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(26) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(27) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(28) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(29) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[0]∧+(x1[3], 1)=x1[0] ⇒ COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3])≥482_0_MAIN_LT(x0[3], +(x1[3], 1))∧(UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(30) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ COND_482_0_MAIN_LT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_482_0_MAIN_LT1(TRUE, x0[2], x1[2])≥482_0_MAIN_LT(x0[2], +(x1[2], 1))∧(UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(31) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(32) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(33) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(34) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(35) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(36) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧+(x1[3], 1)=x1[2]1 ⇒ COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3])≥482_0_MAIN_LT(x0[3], +(x1[3], 1))∧(UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(37) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ COND_482_0_MAIN_LT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_482_0_MAIN_LT1(TRUE, x0[2], x1[2])≥482_0_MAIN_LT(x0[2], +(x1[2], 1))∧(UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(38) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(39) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(40) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(41) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(42) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(482_0_MAIN_LT(x1, x2)) = [-1] + x1
POL(COND_482_0_MAIN_LT(x1, x2, x3)) = [-1] + x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(COND_482_0_MAIN_LT1(x1, x2, x3)) = [-1] + x2
COND_482_0_MAIN_LT(TRUE, x0[1], x1[1]) → 482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)
482_0_MAIN_LT(x0[0], x1[0]) → COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])
COND_482_0_MAIN_LT(TRUE, x0[1], x1[1]) → 482_0_MAIN_LT(+(-(x0[1], 2), 1), 1)
482_0_MAIN_LT(x0[2], x1[2]) → COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])
COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3]) → 482_0_MAIN_LT(x0[3], +(x1[3], 1))
482_0_MAIN_LT(x0[0], x1[0]) → COND_482_0_MAIN_LT(&&(&&(>(x1[0], x0[0]), >(x0[0], 0)), <=(0, -(x0[0], 2))), x0[0], x1[0])
482_0_MAIN_LT(x0[2], x1[2]) → COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])
COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3]) → 482_0_MAIN_LT(x0[3], +(x1[3], 1))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] + 1 →* x1[0]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] + 1 →* x1[2]))
(2) -> (3), if ((x1[2] > 0 && x1[2] <= x0[2] →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] + 1 →* x1[2]))
(2) -> (3), if ((x1[2] > 0 && x1[2] <= x0[2] →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(1) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧+(x1[3], 1)=x1[2]1 ⇒ COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3])≥482_0_MAIN_LT(x0[3], +(x1[3], 1))∧(UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(2) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ COND_482_0_MAIN_LT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_482_0_MAIN_LT1(TRUE, x0[2], x1[2])≥482_0_MAIN_LT(x0[2], +(x1[2], 1))∧(UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(3) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(4) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(7) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(482_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(8) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 482_0_MAIN_LT(x0[2], x1[2])≥NonInfC∧482_0_MAIN_LT(x0[2], x1[2])≥COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥))
(9) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ 482_0_MAIN_LT(x0[2], x1[2])≥NonInfC∧482_0_MAIN_LT(x0[2], x1[2])≥COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥))
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [3]
POL(COND_482_0_MAIN_LT1(x1, x2, x3)) = [-1]x3 + x2 + [-1]x1
POL(482_0_MAIN_LT(x1, x2)) = [-1] + [-1]x2 + x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3]) → 482_0_MAIN_LT(x0[3], +(x1[3], 1))
COND_482_0_MAIN_LT1(TRUE, x0[3], x1[3]) → 482_0_MAIN_LT(x0[3], +(x1[3], 1))
482_0_MAIN_LT(x0[2], x1[2]) → COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])
482_0_MAIN_LT(x0[2], x1[2]) → COND_482_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer